Yiren LU +1 716-529-8175 | yxl3538@case.edu website: https://sairlab.org/team/yirenl/

EDUCATION

Case Western Reserve University	Cleveland, OH, USA
Ph.D. in Computer Science	2024/01 - present
University at Buffalo, State University of New York	Buffalo, NY, USA
M.S. in Computer Science and Engineering	2022/08 - 2023/12
ShanghaiTech University	Shanghai, China
B.Eng. in Computer Science	2017/09 - 2021/08
• Third Prize, 2019 Contemporary Undergraduate Mathematical Contest in Modeling	

PUBLICATIONS

- S. Su, Y. Du, T. Fu, Y. Lu, M. Wen, C. Wang, "iPCR: Self-Supervised Point Cloud Registration with Imperative Learning", submitted to ECCV 2024.
- F. Tai, S. Su, Y. Lu, W. Chen, "iSLAM: Imperative SLAM.", IEEE Robotics and Automation Letters (RA-L), 2024.
- Lu, Y., Wei, H. (2023). End to End Face Reconstruction via Differentiable PnP. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision - ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham.
- X. Zhi, J. Hou, Y. Lu, L. Kneip and S. Schwertfeger, "Multical: Spatiotemporal Calibration for Multiple IMUs, Cameras and LiDARs," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022, pp. 2446-2453.
- J. Cai, J. Hou, Y. Lu, H. Chen, L. Kneip and S. Schwertfeger, "Improving CNN-based Planar Object Detection with Geometric Prior Knowledge", 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2020, pp. 387-393.

WORK EXPERIENCES

TencentShenzhen, ChinaComputer Vision Algorithm Engineer Intern, Interactive Entertainment Group (IEG)2021/07 - 2022/06Fast 3D Motion Capture Pipeline for Live Streaming2021/07 - 2022/06

- Constructed a 30 fps real-time Multiview motion capture system for live streaming with latency less than 1s.
- Utilized mediapipe as 2d keypoint detector and applied triangulation to get 3d coordinate of each keypoint.
- Leveraged optimization methods such as SMPLify and SCOPE to regress body SMPL parameters, and used information of previous frame to speed up the optimization process.
- Extracted the minimal-ik module from minial-hand to calculate hand MANO parameters..

RESEARCH EXPERIENCES

Cross-view Consistent Inpainting in 3D Gaussian Splatting (to be submitted to ACM MM2024)2023/06 - nowVULab, Case Western Reserve University.2023/06 - now

Research Assistant (Supervisor: Prof. Yu Yin)

- Utilize Depth Image Based Rendering (DIBR) to propagate one inpainted view to the rest of the training set, to produce view-consistent inpainting and achieve state-of-the-art performance considering PSNR and LPIPS.
- Leveraged off-the-shelf depth estimation method to generate smooth yet reasonable depth map and align them with the sparse depth produced by SFM to improve DIBR performance.
- Applied depth prior during the DIBR projection process to deal with occlusion and de-occlusion issue.
- Proposed a DIBR based Multiview segmentation method that outperform state-of-the-art method OR-NeRF.

Unsupervised Visual Inertial Odometry with Pose Graph Optimization

SAIR Lab, University at Buffalo.

Research Assistant (Supervisor: Prof. Chen Wang)

- Designed a two branch network to extract information from image and IMU input respectively, and utilized PGO to • fuse the ouput of image and IMU branch.
- Leveraged LSTM for IMU denoise and preintegrated the denoised IMU data to get the predicted IMU pose. •
- Applied flow-based VO (currently TartanVO) as image branch. •
- Utilized the result of PGO as pseudo label to supervise the training of image and IMU branch.

Object Removal in Neural Radiance Field

Visual Computing Lab. University at Buffalo.

Research Assistant (Supervisor: Prof. Junsong Yuan)

- Utilized object-decompsite NeRF to get the spatial location of objects and removed the object by rejecting the samples in that region in rendering process.
- Compared several image inpainting methods including PConv, MSTand etc to perform content generation.
- Utilized partial mask to find the exact region that is obscured, and introduced video object tracking to track the • masked region in different views.
- Applied color constraints to make the generated content consistent with the outside content. •

End-to-End Face Reconstruction via Differentiable PnP

ECCV 2022 WCPA workshop challenge, 3rd prize.

- Designed a two-branch network to deal with the Face Reconstruction and Facial Landmark Detection task. •
- Applied the Gaussion Negative Log Loss(GNLL) to improve the accuracy of Facial Landmark Detection. •
- Contructed a 250 dimension PCA space for canonical 3d mesh and utilized VDC and fWPDC loss to regress 3d mesh. • Finally achieved a SOTA performance with 1.68mm mean error on ARKit dataset.
- Utilized the differentiable Epro-PnP to overcome the training problem of the previous PnP methods, and reached a • SOTA performance on head pose estimation with an MAE of 0.81 and 3.86 on Rotation and Translation respectively.

Improving CNN-based Planar Object Detection with Geometric Prior Knowledge

The MARS Lab, School of Information Science and Technology, ShanghaiTech. Research Assistant (Supervisor: Prof. Sören Schwertfeger)

- Computed 2D homography matrices to wrap source images into target view to compensate for the CNN detector. •
- Conducted dataset collection of the first open-source RGB-D hazmat dataset, which contained 360 RGB images and • 360 depth maps with a resolution of 1280*720.
- Wrapped back the bounding box estimated by YOLO from the canonical view to the original view through the • homography matrix.
- Conducted the real-robot experiment, which showed that our algorithm performed 10% better than one-stage • YOLOv3, and at the same time achieved only1.5s delay (almost real-time).

Multical: Spatiotemporal Calibration for Multiple IMUs, Cameras and LiDARs

The MARS Lab, School of Information Science and Technology, ShanghaiTech. Research Assistant (Supervisor: Prof. Sören Schwertfeger)

- Designed an algorithm to calculate the transformation between LiDAR and the arbitrary target using the geometric • and intensity information captured by LiDAR. Finally reached a 0.71mm transformation error and 0.003rad rotation error in real word when estimating the pose of the AprilGrid Board.
- Conducted the real world temporal calibration experiment, which showed a 0.003ms time offset error when there was a 3ms artificial delay on IMU data.
- Constructed the calibration platform with four cameras and two LiDARs, and was responsible for data collection.
- Used Gazebo to simulate the data collection process.

TECHNICAL SKILLS

Computer Vision: OpenCV, PCL, Open3D, ffmpeg. ML/DL: PyTorch, TensorFlow, SKlearn, Pandas, Numpy, Scipy. Robotics: ROS, PyPose, Gazebo, Rviz.

2022/09 - 2022/12

2019/07 - 2020/08

2020/07 - 2021/07

2022/05 - 2022/08